Saturday, August 29, 2009

Packaging

In a CRT the electron beam is produced by heating a metal filament, which "boils" electrons off its surface. The electrons are then accelerated and focused in an electron gun, and aimed at the proper location on the screen using electromagnets. The majority of the power budget of a CRT goes into heating the filament, which is why the back of a CRT-based television is hot. Since the electrons are easily deflected by gas molecules, the entire tube has to be held in vacuum. The atmospheric force on the front face of the tube grows with the area, which requires ever-thicker glass. This limits practical CRTs to sizes around 30 inches; displays up to 40 inches were produced but weighed several hundred pounds, and televisions larger than this had to turn to other technologies like rear-projection.
The lack of vacuum in an LCD television is one of its advantages; there is a small amount of vacuum in sets using CCFL backlights, but this is arranged in cylinders which are naturally stronger than large flat plates. Removing the need for heavy glass faces allows LCDs to be much lighter than other technologies. For instance, the Sharp LC-42D65, a fairly typical 42-inch LCD television, weighs 55 lbs including a stand,[1] while the late-model Sony KV-40XBR800, a 40" 4:3 CRT weighs a massive 304 lbs without a stand, almost six times the weight.[2]
LCD panels, like other flat panel displays, are also much thinner than CRTs. Since the CRT can only bend the electron beam through a critical angle while still maintaining focus, the electron gun has to be located some distance from the front face of the television. In early sets from the 1950s the angle was often as small as 35 degrees off-axis, but improvements, especially computer assisted convergence, allowed that to be dramatically improved and, late in their evolution, folded. Nevertheless, even the best CRTs are much deeper than an LCD; the KV-40XBR800 is 26 inches deep,[2] while the LC-42D65U is less than 4 inches thick[1] – its stand is much deeper than the screen in order to provide stability.
LCDs can, in theory, be built at any size, with production yields being the primary constraint. As yields increased, common LCD screen sizes grew, from 14 to 30", to 42", then 52", and 65" sets are now widely available. This allowed LCDs to compete directly with most in-home projection television sets, and in comparison to those technologies direct-view LCDs have a better image quality. Experimental and limited run sets are available with sizes over 100 inches.

No comments:

Post a Comment